19 research outputs found

    Dilemma that cannot be resolved by biased quantum coin flipping

    Full text link
    We show that a biased quantum coin flip (QCF) cannot provide the performance of a black-boxed biased coin flip, if it satisfies some fidelity conditions. Although such a QCF satisfies the security conditions of a biased coin flip, it does not realize the ideal functionality, and therefore, does not fulfill the demands for universally composable security. Moreover, through a comparison within a small restricted bias range, we show that an arbitrary QCF is distinguishable from a black-boxed coin flip unless it is unbiased on both sides of parties against insensitive cheating. We also point out the difficulty in developing cheat-sensitive quantum bit commitment in terms of the uncomposability of a QCF.Comment: 5 pages and 1 figure. Accepted versio

    Efficient one- and two-qubit pulsed gates for an oscillator stabilized Josephson qubit

    Full text link
    We present theoretical schemes for performing high-fidelity one- and two-qubit pulsed gates for a superconducting flux qubit. The "IBM qubit" consists of three Josephson junctions, three loops, and a superconducting transmission line. Assuming a fixed inductive qubit-qubit coupling, we show that the effective qubit-qubit interaction is tunable by changing the applied fluxes, and can be made negligible, allowing one to perform high fidelity single qubit gates. Our schemes are tailored to alleviate errors due to 1/f noise; we find gates with only 1% loss of fidelity due to this source, for pulse times in the range of 20-30ns for one-qubit gates (Z rotations, Hadamard), and 60ns for a two-qubit gate (controlled-Z). Our relaxation and dephasing time estimates indicate a comparable loss of fidelity from this source. The control of leakage plays an important role in the design of our shaped pulses, preventing shorter pulse times. However, we have found that imprecision in the control of the quantum phase plays the major role in the limitation of the fidelity of our gates.Comment: Published version. Added references. Corrected minor typos. Added discussion on how the influence of 1/f noise is modeled. 36 pages, 11 figure

    Topological fault-tolerance in cluster state quantum computation

    Get PDF
    We describe a fault-tolerant version of the one-way quantum computer using a cluster state in three spatial dimensions. Topologically protected quantum gates are realized by choosing appropriate boundary conditions on the cluster. We provide equivalence transformations for these boundary conditions that can be used to simplify fault-tolerant circuits and to derive circuit identities in a topological manner. The spatial dimensionality of the scheme can be reduced to two by converting one spatial axis of the cluster into time. The error threshold is 0.75% for each source in an error model with preparation, gate, storage and measurement errors. The operational overhead is poly-logarithmic in the circuit size.Comment: 20 pages, 12 figure

    Scalable Noise Estimation with Random Unitary Operators

    Full text link
    We describe a scalable stochastic method for the experimental measurement of generalized fidelities characterizing the accuracy of the implementation of a coherent quantum transformation. The method is based on the motion reversal of random unitary operators. In the simplest case our method enables direct estimation of the average gate fidelity. The more general fidelities are characterized by a universal exponential rate of fidelity loss. In all cases the measurable fidelity decrease is directly related to the strength of the noise affecting the implementation -- quantified by the trace of the superoperator describing the non--unitary dynamics. While the scalability of our stochastic protocol makes it most relevant in large Hilbert spaces (when quantum process tomography is infeasible), our method should be immediately useful for evaluating the degree of control that is achievable in any prototype quantum processing device. By varying over different experimental arrangements and error-correction strategies additional information about the noise can be determined.Comment: 8 pages; v2: published version (typos corrected; reference added

    Tricolored Lattice Gauge Theory with Randomness: Fault-Tolerance in Topological Color Codes

    Get PDF
    We compute the error threshold of color codes, a class of topological quantum codes that allow a direct implementation of quantum Clifford gates, when both qubit and measurement errors are present. By mapping the problem onto a statistical-mechanical three-dimensional disordered Ising lattice gauge theory, we estimate via large-scale Monte Carlo simulations that color codes are stable against 4.5(2)% errors. Furthermore, by evaluating the skewness of the Wilson loop distributions, we introduce a very sensitive probe to locate first-order phase transitions in lattice gauge theories.Comment: 12 pages, 5 figures, 1 tabl

    Symmetry protection of measurement-based quantum computation in ground states

    Full text link
    The two-dimensional cluster state, a universal resource for measurement-based quantum computation, is also the gapped ground state of a short-ranged Hamiltonian. Here, we examine the effect of perturbations to this Hamiltonian. We prove that, provided the perturbation is sufficiently small and respects a certain symmetry, the perturbed ground state remains a universal resource. We do this by characterising the operation of an adaptive measurement protocol throughout a suitable symmetry-protected quantum phase, relying on generic properties of the phase rather than any analytic control over the ground state.Comment: 20 pages plus appendices, 11 figures, comments very welcome; v2 minor corrections and additional references; v3 published version with minor correction

    Fault tolerant architectures for superconducting qubits

    Full text link
    In this short review, I draw attention to new developments in the theory of fault tolerance in quantum computation that may give concrete direction to future work in the development of superconducting qubit systems. The basics of quantum error correction codes, which I will briefly review, have not significantly changed since their introduction fifteen years ago. But an interesting picture has emerged of an efficient use of these codes that may put fault tolerant operation within reach. It is now understood that two dimensional surface codes, close relatives of the original toric code of Kitaev, can be adapted to effectively perform logical gate operations in a very simple planar architecture, with error thresholds for fault tolerant operation simulated to be 0.75%. This architecture uses topological ideas in its functioning, but it is not 'topological quantum computation' -- there are no non-abelian anyons in sight. I offer some speculations on the crucial pieces of superconducting hardware that could be demonstrated in the next couple of years that would be clear stepping stones towards this surface-code architecture.Comment: 28 pages, 10 figures. For the Nobel Symposium on Qubits for Quantum Information, submitted to Physica Scripta. v. 2 Corrections and small changes to reference

    Can One Trust Quantum Simulators?

    Full text link
    Various fundamental phenomena of strongly-correlated quantum systems such as high-TcT_c superconductivity, the fractional quantum-Hall effect, and quark confinement are still awaiting a universally accepted explanation. The main obstacle is the computational complexity of solving even the most simplified theoretical models that are designed to capture the relevant quantum correlations of the many-body system of interest. In his seminal 1982 paper [Int. J. Theor. Phys. 21, 467], Richard Feynman suggested that such models might be solved by "simulation" with a new type of computer whose constituent parts are effectively governed by a desired quantum many-body dynamics. Measurements on this engineered machine, now known as a "quantum simulator," would reveal some unknown or difficult to compute properties of a model of interest. We argue that a useful quantum simulator must satisfy four conditions: relevance, controllability, reliability, and efficiency. We review the current state of the art of digital and analog quantum simulators. Whereas so far the majority of the focus, both theoretically and experimentally, has been on controllability of relevant models, we emphasize here the need for a careful analysis of reliability and efficiency in the presence of imperfections. We discuss how disorder and noise can impact these conditions, and illustrate our concerns with novel numerical simulations of a paradigmatic example: a disordered quantum spin chain governed by the Ising model in a transverse magnetic field. We find that disorder can decrease the reliability of an analog quantum simulator of this model, although large errors in local observables are introduced only for strong levels of disorder. We conclude that the answer to the question "Can we trust quantum simulators?" is... to some extent.Comment: 20 pages. Minor changes with respect to version 2 (some additional explanations, added references...
    corecore